DEPARTMENT OF MECHANICAL ENGINEERING Program outcomes Detail

Sr.	Academic	Types of	Outcomos
No.	contents	contents	Outcomes
1.		1	1. An ability to apply knowledge of mathematics, science and engineering principles for providing engineering solutions pertaining to agriculture
			2. An ability to identify, formulate analyze and solve problems related to agriculture
		3	3. An ability to design a system, components or process to increase agricultural production to meet the growing population
			4. An ability to conduct experiments, analyze and interpret experimental results to provide valid conclusion.
			5. An ability to conduct experiments, analyze and interpret experimental results to provide valid conclusion.
	Program F outcome	B. Tech 6. 7. 8. 9.	6. An ability to perform in multidisciplinary areas with social consciousness.
			7. An ability to display social responsibility in sustaining natural environment.
			8. An ability to apply professional and ethical principles with responsibility.
			9. An ability to function effectively as an individual, as a part of team and in a multi-disciplinary environment.
			10. An ability to communicate effectively.
			11. An ability to devise a strategy or action plan to utilize the acquired knowledge in increasing water-use efficiency, farm mechanization and post harvest technology
			12. An ability to engage in independent and lifelong learning in agricultural production processes

Sr.	Academic	Types of	Outcomos
No.	contents	contents	Outcomes

2. Program Specific	B. Tech.	Each student will attain at least the following
<u>outcomes</u>	(Agriculture)	specific outcomes from this B. tech degree course:
		PSOI: 10 design, develop agricultural
		implements for effective and efficient agricultural
		production.
		PSO2: To engage in lifelong learning,
		commitment to quality and continuous
		improvement in agricultural production system.
		PSO3: Ability to work in multidisciplinary teams.
		PSO4: Effectively use the technology in post-
		harvest operations.
		PSO 1: utilize adequate knowledge in different
		disciplines of Agriculture engineering to gain
		better employment in various industries of
		Agriculture engineering.
		PSO 2: use their expertise in planning
		judicious utilization of natural recourses and
		their management through advanced soil and
		water conservation techniques and various
		irrigation and drainage methods with the skill
		of data interpretation.
		PSO 3: develop skills necessary to design the
		process and evaluate and come out with
		problem solutions of farm implements through
		adequate farm power for sustainable
		agriculture.
		PSO 4: apply the comprehensive knowledge of
		engineering properties of agricultural produce

		for upgrading the unit operation and further
		develop effective value added technologies and
		become strong in quality control.
		PSO5: develop diverse capability to work with
		tractor and implement manufacturing
		industries, seed processing industries,
		irrigation and drainage companies and also to
		run self-entrepreneurship like dairy farming
		and custom hiring centers.
		PSO6: take up higher studies in reputed
		institutes and motive towards innovative
		research by applying their skills in agricultural
		water management, farm machinery and
		power, processing and energy management
		systems in agriculture.
		PSO7: understand the issues of ethics, safety,
		professionalism, cultural diversity,
		globalization, environmental impact and
		responsibility of serving the society and the
		environmental issues.
	B. Tech.	CO1Determine the resultant force and moment for a
BOS (Agricultures)Date: 23/2/2019	(Agriculture) <u>1. MEL0101</u> Engineering	systems to determine the forces in members of trusses, frames and problems related to friction. CO2Calculate the motion parameters for a body
	Mechanics (1 st semester)	subjected to a given force system. CO3Determine the deformation of a shaft and
		understand the relationship between material
		CO4Determine the centroid and second moment of
	Credits (3-1-2)5	area
		3 Theory period of Fifty minutes per week over a
		semester

	 1 Tutorial period of Fifty minutes per week over a semester 2 Practical period of Fifty minutes per week over a semester
2.MEP 0101 Mechanical Workshop (1 st semester) Credits (0-0-2)	CO1Study and practice on machine tools and their operations CO2Practice on manufacturing of components using workshop trades including fitting carpentry, foundry and welding CO3Identify and apply suitable tools for machining processes including turning, facing thread cutting and tapping 2 Practical period of Fifty minutes per week over a semester
3.MEL0202 Engineering Graphics (2 nd semester) Credits (2-1-2	 CO1 Draw orthographic projections of lines, planes and solids. CO2 Construct isometric scale, isometric projections and views CO3 Draw sections of solids including cylinders, cones, prisms and pyramids CO4 Draw projections of lines, planes, solids, isometric projections and sections of solids CO5 Draw projections OF cylinders, cones, prisms and pyramids using Auto CAD 2 Theory period of Fifty minutes per week over a semester 1 Tutorial period of Fifty minutes per week over a semester 2 Practical period of Fifty minutes per week over a semester
4 MEL0203 Basic Mechani Engineering Credits (3-1-2	 CO1 Materials: Classification of engineering material, composition of cast iron, CO2 Measurements: Temperature, pressure, velocity, flow, strain, force and torque CO3 Manufacturing & Welding Introduction to elementary manufacturing Processes: casting, pattern types, moulds

		 CO4ThermodynamicsFirst & Second law of thermodynamics, Carnot Cycle, Properties of steam, CO5 Fluid mechanics Definitions of fluid, Types of fluid, Fluid Properties, 3 Theory period of Fifty minutes per week over a semester 1 Tutorial period of Fifty minutes per week over a semester 2 Practical period of Fifty minutes per week over a semester
	MEL 0309 Strength of material Credits (3-1-2)5	CO1Understanding Stress and strain; normal, shear and bearing stresses; CO2Understanding Strain energy CO3Understanding State of stress, Generalized Hook's Law, stress transformation CO4Understanding Mohr's Circle representation for stress and strains CO5Understanding Bending of beams: CO6Understanding Torsion of Shafts CO7Understanding Pressure Vessels: 3 Theory period of Fifty minutes per week over a semester 1 Tutorial period of Fifty minutes per week over a semester 2 Practical period of Fifty minutes per week over a semester
	AGL 0301 Crop Production Technology Credits (3-1-0)4	CO1 Concepts in crop production; geographical distribution of crops and cropping systems; economic importance. CO2 Modern Techniques of Raising Field and Horticultural Crops CO3 Seed and Seeding Practices Scheduling of Irrigation and Fertilizers CO4 Plant Protection Measures Pesticides types of weedicides and insecticides available to control CO5 Harvest and Post Harvest Operations Method of harvesting; modern implements their efficiency and economics, 3 Theory period of Fifty minutes per week over a semester

	1 Tutorial period of Fifty minutes per week over
	a semester
AGL 0302 Soil Technology Credits (3-1-2)5	 CO1 Soil genesis Weathering, formation and composition of soil, CO2 Engineering Properties of Soils Water content; Unit weight of soil; Specific gravity; CO3 Classification of Soils and Clay Mineralogy Particle size classification; Textural classification; HRB classifications CO4 Soli Hydraulics Modes of occurrence of water in soils; Stress condition in soil; Permeability; CO5 Stabilization of Soil and Site Investigation Introduction; Method of Stabilization; Site exploration 3 Theory period of Fifty minutes per week over a semester 1 Tutorial period of Fifty minutes per week over a semester 2 Practical period of Fifty minutes per week over a semester
AGL 0304 Material science Credits (3-1-0)4	CO1 Crystal Structures Space lattice and crystal structures, Determination of Crystal structure by X- ray technique CO2 Behavior of Materials Elastic and viscoelastic behavior of materials, plastic deformation, strain hardening CO3 Mechanical Properties of Materials Tensile and compression test, shear test, fatigue test, hardness test, CO4 Dielectric Materials Principles, temperature and frequency effects, ferroelectric materials CO5 Polymers & Other Materials Types, properties, additives, application. Brief description of other material 3 Theory period of Fifty minutes per week over a semester 1 Tutorial period of Fifty minutes per week over a semester
	AGL 0302 Soil Technology Credits (3-1-2)5 AGL 0304 Material science Credits (3-1-0)4

	MEP 0302	CO1 Drawing Conventions:
	Machine	Drawing standards, first angle projection,
	drawing	orthographic views, sectioning and its rules
	Credits (0-0-2)1	CO2 Conventional Representation
		conventional representation of machine parts such as
		threads, slotted heads, square ends
		CO3 Drawing of Agricultural fasteners:
		Nut, bolt and washers, locking arrangements, rivets
		and heads
		CO4 Assembly drawing of power transmission
		components:
		Muff and flange couplings, solid and bushed journal
		bearings, pedestal bearing,
		CO55 Computer aided drafting:
		Software, graphic screen, setting of blank sheet for
		drawing, draw commands,
		2 Practical period of Fifty minutes per week over
		a semester
	MEL 0305	COlUnderstand the concepts of continuum, system,
	Basic	control volume, thermodynamic properties,
	thermodynamics	thermodynamic equilibrium, work and heat
	Credits (3-1-2)5	CO2Apply the laws of thermodynamics to analyze
		boilers, heat pumps, refrigerators, heat engines,
		compressors and nozzles.
		CO3Evaluate the available energy and
		irreversibility
		CO4Evaluate properties of pure substances and gas
		co4Evaluate properties of pure substances and gas
		mixtures
		CO5Analyze air standard cycles applied in prime
		movers
		CO6Understand the heat transfer, energy
		conversion, Refrigeration & air conditioning, and
		I.C. Engines
		3 Theory period of Fifty minutes per week over a
		semester
		1 Tutorial period of Fifty minutes per week over a
		a rational period of rinty minutes per week over a
		2 Practical period of Fifty minutes per week over a
		semester

MEL 0407	CO1Apply conservation laws to fluid flow problems
Fluid	in engineering applications.
Mechanics	CO2Design experimental investigations for
(4 rd semester)	properties of fluids
Credits (3-1-2)5	 CO3Compute drag and lift coefficients using the theory of boundary layer flows CO4Analyze and design free surface and pipe flows CO5Formulate and solve one dimensional compressible fluid flow problems 3 Theory period of Fifty minutes per week over a semester 1 Tutorial period of Fifty minutes per week over a semester 2 Practical period of Fifty minutes per week over a semester
AGL0406 Hydrology Credits (3-1-0)4	 CO1 Introduction Hydrologic cycle; schematic diagram CO2 Meteorological Parameters and Their Measurements. Precipitation: Its different forms viz. snow, sleet, rain, hail etc CO3 Precipitation Data Analysis and Runoff Estimation Rainfall mass curve; Hyetograph; Mean rainfall depth; CO4 Hydrograph and Flood Analysis Hydrograph separation; Unit hydrograph theory: Unit graph of different duration CO5 Ground Water Hydrology Occurrence distribution and movement of ground water. Hydrological Modeling Introduction of basic concepts, 3 Theory period of Fifty minutes per week over a semester 1 Tutorial period of Fifty minutes per week over a semester

AGL0408	CO1 IntroductionObjective of the course and its
AGL0408 Kinematics and Dynamics of machines Credits (3-1-2)5	 CO1 IntroductionObjective of the course and its application in design of various moving parts in mechanical systems as well as agricultural machinery. CO2 -Balancing definition; Static and dynamic balancing; CO3 Agricultural MachineryMechanism used in crop production and processing machines CO4 Gears and Gear TrainsClassification of gears; Law of gearings; Forms of teeth; CO5 Cam, Governors, Brakes and Dynamometers
	 3 Theory period of Fifty minutes per week over a semester 1 Tutorial period of Fifty minutes per week over a semester 2 Practical period of Fifty minutes per week over a semester
AGL0409 Soil and water conservation engineering Credits (3-1-0)4	 CO1 IntroductionSoil erosion, causes, types and its major effects. CO2 Wind Erosion and Control Mechanics of wind erosion, soil loss estimation, wind erosion control measures CO3 Grassed Water WaysDesign of grassed waterways. Gully and Ravine ReclamationGully control structures temporary and permanent; CO4 Farm Pond and Earthen EmbankmentGeneral description of earthen embankments, earth fill and rock fill dams, classification of earthing dams CO5 Watershed ManagementIts objectives, preparation of watershed management and development plan. Water harvesting- Rain Water Harvesting & Storage Structures: 3 Theory period of Fifty minutes per week over a semester 1 Tutorial period of Fifty minutes per week over a semester

1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
		1

1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
1		
		1

1		1
1		1
		1
1		1
		1
		1
		1
		1
1		1
		1
1		1
		1
		1
		1
		1
1		1
		1
		1
1		1
		1
1		1
		1
1		1
		1
		1
1		1
		1
1		1
		1
1		1
1		1
1		1
		1
		1
1		1
		1
		1
1		1
1		1
1		1
		1
		1
1		1