DEPARTMENT OF MCHANICAL ENGINEERING Program Outcomes Detail B.Tech. (Petroleum Engineering)

Sr. No.	Academic contents	Types of contents	Outcomes
1.	<u>Program</u> Specific	B.Tech. (Petroleum	Each student will attain at least the following specific outcomes from this B. tech degree course:
	outcomes	(Four oreaning)	1. Proper scientific and technical knowledge
		Engineering)	Graduates shall make their way to the society with proper
			scientific and technical knowledge in Petroleum engineering.
			2 .Strong fundamentals
			Graduates shall work in design and analysis of mechanical
			systems with strong fundamentals and methods of Petroleum
			Exploration
			3.Ability of Designing and developing important
			<u>components</u>
			Ability to design and develop components and processes of
			Petroleum Exploration to meet desired needs considering public
			health, safety, cultural, social, and environmental aspects.
			4. Ability of understanding
			Ability to understand and investigate complex Petroleum
			5 A bility of applications
			Ability to apply modern engineering tools techniques and
			resources to solve complex activities with an understanding of
			the limitations.
			6. Ability of analyzing and understanding
			Ability to understand the effect of engineering solutions on
			legal, cultural, social, public health and safety aspects.
			7. <u>Capability of sustainable solutions</u>
			Capable of developing sustainable solutions and create their
			long lasting effect on society and environment
			8. <u>Capability of ethical principles</u>
			Capable to apply ethical principles to engineering practices and
			professional responsibilities.
			9.Capability of reporting
			Capable to comprehend, design documentation, write
			effective reports, make effective presentations to the
			engineering community and society at large.
			<u>10. Adoption of rapid changes</u>
			Graduates shall adapt to the rapidly changing environment in
			the areas of petroleum engineering
			12. Excellence in career Graduates shall apphieve availlance in corear develop shility to
			work and communicate effectively as a team member and/or

	leader to complete the task with minimal resources, meeting
	deadlines.
	13. <u>Applications of Knowledge:</u>
	Shall be able to apply the knowledge of mathematics, science,
	engineering fundamentals, and an engineering specialization to
	the solution of complex engineering problems.
	14. Critical analyzing capability
	Capability to share the responsibilities in planning and
	utilization analyzing the processes critically.
	15. Problem Solving attitude :
	An attitude of Designing exploration and other processes and
	systems to meet specific needs and solve problems.
	<u>16. Research attitude</u>
	Analyze and model the mechanical engineering more
	effectively and hence contribute towards research and solving
	complex problem.
	<u>17 Acquaintance of latest developments and techniques</u>
	The graduates shall readily grasp the latest developments and
	techniques in petroleum engineering and also capable of their
	applications
	<u>18.Capable of Collaborative and Multi disciplinary work:</u>
	Capable of Contributing in academics by multidisciplinary
	works involving social health, safety, legal, and consequent
	responsibility.
	19. Understanding Environment and its Sustainability:
	Appreciate the impact of industrial activities on global warming
	and finding the sustainable technical solutions through
	20 Hoving Strong moral Ethics:
	20. <u>Having Strong moral Eules</u> . Understand the importance of financial equate in system
	infrastructure development with athical principles and social
	responsibilities
	responsionnies.
	21 Individual and Team Work
	Undertake project in emerging areas to function effectively as
	an individual and as a member or leader in diverse teams
	Adequate knowledge and exposure to industry standard
	software and hardware to lead professional carrier in this field
	22. Strong Communication:
	Communicate effectively with diverse audiences and able to
	write/present effective reports and design technical
	documentation. Ability to communicate effectively and execute
	the work as a team.
	23. Tendency of Life-long learning:
	23. <u>Tendency of Life-long learning</u> :

	Recognize the need for, and have the preparation and ability to
	engage in independent and life-long learning in the broadest
	context of technological change.
	24. Managing capability
	Managing oil recovery from various reservoirs through diligent
	monitoring ensuring improved profitability and reduced
	operating costs
	25.Perform with due diligence
	Perform with due diligence and reserve estimations in desert
	area of Rajasthan where the rich reserves of the fuel are
	available
	26.Strong inter-personal and technical skills
	Strong inter-personal and technical skills through successful
	training of junior staff by integrating best practices of the
	industry.
	27.As a Piping Engineer
	As a Chief Piping Engineer where the sound technical
	experience and prowess in installation of piping can help in
	executing projects at a faster pace through reduced costs.
	<u>28.Turnkey project</u>
	Completing the fastest turnkey project within scheduled time
	period with available resources.
	29. Executing work
	Responsibility for preparing and checking approval drawings
	for executing work adhering to applicable procedures and
	30 Supervising conscitu
	Supervising capacity Supervising team of designers and engineers to execute work as
	supervising team of designers and engineers to execute work as
	applicability
	31.Managing numerous projects
	Managing layout development of numerous projects in a way
	that would address cost concerns along with adequate safety
	and reliability.
	32.Exploration procedures,
	Understanding procedures involved in exploration, extraction
	and transportation of Crude oil to begin with.
	33. Oil and gas Refining
	covers details related to refining of this crude oil and producing
	the primary product- petroleum
	34. Oil and gas evaluation
	Covers nearly all of the stages of oil and gas field evaluation,
	development and production.
	35. Maximizing hydrocarbon recovery

	Maximizing hydrocarbon recovery at minimum cost whi
	maintaining a strong emphasis on reducing environment
	impact.

<u>Course Outcome</u> <u>B.Tech. (Petroleum Engineering)</u>

Sr. No.	Academic contents	Types of contents	Outcomes
2.	Course	1.MEL0202	CO1 Draw orthographic projections of lines, planes and solids.
	outcome	Engineering	CO2 Construct isometric scale, isometric projections and views
		Graphics	CO3 Draw sections of solids including cylinders, cones, prisms
		(2 nd semester)	and pyramids
			CO4 Draw projections of lines, planes, solids, isometric
			projections and sections of solids
			CO5 Draw projections OF cylinders, cones, prisms and
			pyramids using Auto CAD
		Credits (2-1-2)4	2 Theory period of Fifty minutes per week over a semester
			1 Tutorial period of Fifty minutes per week over a semester
			2 Practical period of Fifty minutes per week over a semester
		<u>2. MEL0101</u>	CO1Determine the resultant force and moment for a given force
		Engineering	system. Analyze planar and spatial systems to determine the
		Mechanics	forces in members of trusses, frames and problems related to
		(1 st semester)	friction.
			CO2Calculate the motion parameters for a body subjected to a
			given force system.
			CO3Determine the deformation of a shaft and understand the
			relationship between material constants
		Credits (3-1-2)5	CO4Determine the centroid and second moment of area
			CO5Determine the power transmission in belts
			3 Theory period of Fifty minutes per week over a semester
			1 Tutorial period of Fifty minutes per week over a semester
		2 MED 0101	2 Practical period of Fifty minutes per week over a semester
		<u>S.MEP 0101</u>	COllision and practice on machine tools and their operations
		Mechanical Washabas	CO2Practice on manufacturing of components using
		(1st comostor)	workshop trades including fitting carpentry, foundry and
		(1 ²² semester)	CO2Identify and apply suitable tools for machining processes
		Cradits (0.0.2)1	including turning facing thread cutting and tanning
		CICUIIS (V-V-2)1	2 Practical period of Fifty minutes per week over a semester
			COLUMN CO
		<u>4. PTL 0301</u>	CO1 drill cutting & return mud analysis of oil & gas
		well Logging	CO2 norizontal well logging , well logging equipment
		(3 ^{ru} semester)	

		CO3logging environment, the pressure environments of
		borehole logging and invasion,
		CO4 Principles and application of logging tools
	Credits (3-0-0)3	CO5 Determination with the Neutron Density Darcy's Law
	Creatis (5-0-0)5	CO6 Compart hand log compart hand log interpretation models
		COo Cement bond log, cement bond log interpretation models,
		3 Theory period of Fifty minutes per week over a semester
	5. PTL 0302	CO1 importance of geology in petroleum engineering, structure
	Geology for	of the earth,
	Petroleum	CO2 convergent, seismic facies and sequence stratigraphy
	Engineers	CO3 Petrology: origin, classification, texture and structure of
	(3 rd somester)	igneous
	(J semester)	COA Structural goology causes and classifications of faults
		CO4 Structural geology. causes and classifications of faults
		COS Origin of Petroleum, migration and accumulation
		CO6 Remote sensing, application of GIS in petroleum
	Credits (3-0-2)4	exploration
		3 Theory period of Fifty minutes per week over a semester
		2 Practical period of Fifty minutes per week over a semester
	6. PTL 0303	CO1 Drilling rigs its types, components of drilling rig.
	drilling	CO2Subsurface pressures: Pore pressure, abnormal pressure,
	technology and	subnormal pressure logging while drilling (LWD)
	well completion	CO2Pora hole problems: Identification of hole problem
	(2rda and a start)	differential sticking fraging differentially stuck ning
	(3 rd semester)	differential sticking, freeing differentially stuck pipe.
		CO4Drill Bit: Drill bit selection, roller cone bit, milled tooth bit,
		P.D.C. bit, diamond & T.S.P bit.
		CO5Drilling Fluids (oil, water and pneumatic based): Drilling
		fluid types and its selection.
		CO6 Cementing: Functions of cement, cement, classes of
	Credits (4-0-0)4	cement, cementing additives, slurry testing.
		4Theory period of Fifty minutes per week over a semester
	7 PTL 0304	CO1 Understanding to Health safety challenges in oil and gas
	Health safety and	industry risks involved in oil and gas industry
	anvironment	CO2 Understanding to Pagulatory raging for ail & gas:
	(2rdgamagtan)	Degulatory/statutory according (C D C D C LE D C C A T A C
	(J-"semester)	Regulatory/statutory agencies (C.P.C.B, C.I.F, D.G.C.A, I.A.C,
		B.A.K.C, D.G.M.S , I.M.O, O.I.S.D);
		CO3 Understanding to Integrated HSE management system in
		business,HSE policy,HSE organization
		CO4 Understanding to H.S.E Audit, Types of audit, objectives
		of audits, audit agencies
		CO5 Understanding to Waste water treatment, oil spill its effect
		and management
		CO6 Understanding to gas flaring effect of petroleum operation
	Credits (2_0_2)3	on environment
	CICUII3 (2-0-2)3	On environment.
		2 Theory period of Fifty minutes per week over a semester
		2 Practical period of Fifty minutes per week over a semester

7. PTL 0401	CO1 Understanding Reservoir Performance, G.O.R behavior,
production	W.O.R behavior, Reservoir performance curves
engineering	CO2 Understanding Vertical Lift Performance: Flow regimes in
(4 th semester)	vertical two phase flow.
	CO3 Understanding Principles of Gas Lift, compressor horse
	power requirement and it's optimization.
	CO4 Understanding Sucker rod pumping, surface & subsurface
	equipment, perforation, perforating guns
	CO5 Understanding effect of water & gas coning on well
	performance, SARA analysis
	CO6 Understanding Petroleum Economics, N.P.V., effect of
Credits (3-1-0)4	inflation, effect of N.P.V on project analysis
	3 Theory period of Fifty minutes per week over a semester
	1 Tutorial period of Fifty minutes per week over a semester
PTL 0402	CO1 Understanding to pressure-temperature diagram, oil
reservoir	reservoirs, gas reservoirs. Properties of natural gases, behavior
engineering	of ideal and real gas
(4 th semester)	CO2 Understanding to Types of reservoir fluids, flow regimes
	CO3 Understanding to Porosity, Permeability, relative
	permeability, saturation, wettability
	CO4 Understanding to Coning in oil and gas wells, vertical and
	horizontal oil well performance
	CO5 Understanding to Primary recovery mechanism, depletion
	drive mechanism
Credits (3-1-0)4	3 Theory period of Fifty minutes per week over a semester
	1 Tutorial period of Fifty minutes per week over a semester
12.MEL 0410	CO1Understanding Stress and strain; normal, shear and bearing
Mechanics of	stresses;
Solid	CO2Understanding Strain energy
(4 th semester)	CO3Understanding State of stress, Generalized Hook's Law,
	stress transformation
	CO4Understanding Mohr's Circle representation for stress and
	strains
	CO5Understanding Bending of beams:
	CO6Understanding Torsion of Shafts
	CO7Understanding Pressure Vessels:
Credits (3-1-2)5	3 Theory period of Fifty minutes per week over a semester
	1 Tutorial period of Fifty minutes per week over a semester
	2 Practical period of Fifty minutes per week over a semester

PTL 0403	CO1 Understanding to Introduction of petroleum and natural
petroleum and	gas rules, grant of license and lease
natural gas rule	s CO2 Understanding to Oil field regulations and development
(4 th semester)	acts
	CO3 Understanding to New exploration licensing policy
	(N.E.L.P), features and objective of N.E.L.P., Pre-N.E.L.P era,
	Pre N.E.L.P joint venture
	CO4 Understanding to Joint Operating Agreement (J.O.A).
	license, joint venture
	CO5 Understanding to Notice Inviting offers format for
	submission for bids model production sharing contract
Credits (2-0-0)2	(MPSC) Main featured of MPSC
	2 Theory period of Fifty minutes per week over a semester
	2 Theory period of They minutes per week over a semester
<u>PTL 0501</u>	CO1 Understanding to Extraneous Gas and water entry into well
Production	bore
Engineering-II	CO2 Understanding to Sand production and control
(5 th semester)	CO3 Understanding to Wall work-over problems, rigs election
	CO4 Understanding to Oil and gas separation process
	optimization
	CO5 Understanding to Crude oil storage; under ground gas
Credits (3-1-2)5	storage
	3 Theory period of Fifty minutes per week over a semester
	1 Tutorial period of Fifty minutes per week over a semester
	2 Practical period of Fifty minutes per week over a semester
PTL 0502	CO1 Understanding to Gas, gas-condensate and oil reserves
Applied	CO2 Understanding to Material balance equation: generalized
petroleum	and specific form for different drive systems
reservoir	CO3 Understanding to Performance prediction; water influx
engineering	estimation
(5 th semester)	CO4 Understanding to reservoir pressure maintenance
	CO5 Understanding to Oil and gas field development
	3 Theory period of Fifty minutes per week over a semester
Credits (3-1-0)4	1 Tutorial period of Fifty minutes per week over a semester
PTL 0503	CO1 Understanding Sedimentary process & their products
Applied geology	CO2 Understanding Sedimentary environment reconstruction
(5 th semester)	CO3 Understanding Sedimentology and petroleum exploration
	CO4 Understanding Origin of Oil & gas source rock and
	maturation process
	CO5 Understanding Petroleum entranment
	3 Theory period of Fifty minutes per week over a semester
Cradits (2-1-2)5	1 Tutorial period of Fifty minutes per week over a semister
Creatis (5-1-2)5	2 Practical period of Fifty minutes per week over a semester
	2 i raciical period of rinty minutes per week over a sellester

PTL 0504		CO1 Understanding To design and conduct experiments and
Petroleun	n Process	analyze and interpret data
Unit Oper	ations	CO2 Understanding Momentum, heat and mass balance in
(5 th semest	er)	multi-component system
	,	CO3 Understanding Phase equilibrium
		CO4 Understanding Extraction: liquid-liquid extraction
		CO5UnderstandingAbsorption.drving.crvstallization.and
		humidification
Credits (3	-1-2)5	3 Theory period of Fifty minutes per week over a semester
)•	1 Tutorial period of Fifty minutes per week over a semester
		2 Practical period of Fifty minutes per week over a semester
 PTL 0505		CO1 Understanding Sources of Natural gas. Natural Gas
Natural (las	industry: Size and direction of development
Engineerin	g	CO2 Understanding Flow of gas in well tubing. Pws. Pwf and
(5 th semest	er)	Pwh equations
	(•=)	CO3 Understanding Estimation of gas reserves by volumetric
		method – Natural Gas processing
		CO4 Understanding Solid bed adsorption and membrane
		separation process – NGL fractionation. Process, system.
		storage transportation and utilization
		CO5 Understanding Underground storage: system and
		production performance
		3 Theory period of Fifty minutes per week over a semester
Credits (3	-1-0)4	1 Tutorial period of Fifty minutes per week over a semester
 PTH 0501	10)4	CO1 Understanding Students will learn PVT behavior of fluids
Mass trans	fer	laws of thermodynamics
(5 th semest	er)	CO2Understanding Definitions and Concepts, Property,
		Thermodynamic State Equilibrium. Energy
		CO3 Understanding Application of I Law of Thermodynamics
		for Flow Process.
		CO4 Understanding Power and Refrigeration Cycles,
		Thermodynamic Potentials Maxwell relations
		CO5 Understanding Thermodynamic equilibrium distribution –
		thermodynamic distribution function
Credits (3	-1-0)4	3 Theory period of Fifty minutes per week over a semester
	·	1 Tutorial period of Fifty minutes per week over a semester
PTH 0502		CO1 Understanding Introduction to Fertilizer Industry,
Hydrocar	bon	Definition, Types, Consumption
Based Fer	tilizer	CO2 Understanding Natural gas demand, Petrochemicals
Industry		requirement
(5 th semest	er)	CO3 Understanding Different Unit involved in fertilizer
		process, Fluidized catalytic cracking unit
		CO4 Understanding Key Fertilizer Product and process
		involved in making including multi nutrient fertilizer
		CO5 Understanding Challenges faced by fertilizer Industry,
		Different types of challenges

	3 Theory period of Fifty minutes per week over a semester
Credits (3-1-0)4	1 Tutorial period of Fifty minutes per week over a semester
PTL 0601	CO1 Understanding Geochemical methods of prospecting: Soil-
Petroleum	chemical survey,
Exploration	CO2 Understanding Geological exploration processes:
methods	Sequence of operation
(6 th semester)	CO3 Understanding Survey instruments
	CO4 Understanding Units, Measuring instruments
	CO5 Understanding Type Methodology of refraction profiling
Credits (3-1-0)4	3 Theory period of Fifty minutes per week over a semester
	1 Tutorial period of Fifty minutes per week over a semester
PTL 0602	CO1 Understanding Introduction to Oil and Gas well testing
Oil and Gas well	CO2 Understanding Flow of compressible fluid through porous
testing	media, unsteady state,
(6 th semester)	CO3 Understanding Pressure-transient tests: pressure draw-
	down,
	CO4Understanding Multi-rate test, Reservoir limit test,
	Injection and fall-off test
	CO Understanding Type curves: generation and interpretation,
	Gas well testing
Credits (3-1-0)4	3 Theory period of Fifty minutes per week over a semester
	1 Tutorial period of Fifty minutes per week over a semester
PTL 0603	CO1 Understanding Introduction to EOR, Reservoir
Enhanced Oil	Engineering aspects of enhanced recovery methods
Recovery	CO2 Understanding Water flooding, Fractional flow equation,
Methods	Frontal advance theory
(6 th semester)	CO3 Understanding Flow of miscible fluids, Conditions of
	miscibility, miscible displacement processes.
	CO4 Understanding Miscible displacement processes -
	miscibility condition
	CO5 Understanding Thermal flooding processes: Hot water
	flooding, Steam flooding
Credits (3-1-0)4	3 Theory period of Fifty minutes per week over a semester
	1 Tutorial period of Fifty minutes per week over a semester

	PTL 0604	CO1 Understanding Design of pipe fittings and joints
	Process	CO2 Understanding Design of reaction vessel and storage tank
	Equipment Design	CO3 Understanding Design of high pressure vessels and
	and Drawing	reactors
	(6 th semester)	CO4 Understanding Design of physical separation equipments
		such as cyclones
		CO5 Understanding Distillation columns and reactors
	Credits (3-1-2)5	3 Theory period of Fifty minutes per week over a semester
		1 Tutorial period of Fifty minutes per week over a semester
		2 Practical period of Fifty minutes per week over a semester
	PTL 0605	CO1 Understanding To enable the students to gain knowledge
	Chemical Reaction	on different types of chemical reactors
	Engineering	CO2 Understanding Design of continuous reactors - stirred tank
	(6 th semester)	and tubular flow reactor
		CO3 Understanding Design of reactors for multiple reactions
		CO4Understanding Non-isothermal homogeneous reactor
		systems, adiabatic reactors,
		CO5 Understanding The residence time distribution as a factor
		of performance
		3 Theory period of Fifty minutes per week over a semester
	Credits (3-1-2)5	1 Tutorial period of Fifty minutes per week over a semester
		2 Practical period of Fifty minutes per week over a semester
	PTH 0601	CO1 Understanding Direct methods: core evaluation
	Formation	CO2 Understanding Indirect Methods: SP log: principles and
	Evaluation	application
	(6 th semester)	CO3 Understanding Resistivity departure curves: Origin and
		application
		CO4 Understanding Radioactivity Logs: Natural gamma-ray
		CO5 Understanding Interpretation and analysis:Formation
		3 Theory period of Fifty minutes per week over a semester
	Credits (3-1-0)4	1 Tutorial period of Fifty minutes per week over a semester
	PTH 0602	CO1 Understanding City Gas Distribution
	City Gas	CO2 Understanding Petroleum and Natural Gas Regulatory
	Distribution	Board
	(6 th semester)	CO3 Understanding Gas Transmission and Distribution System
		CO4 Understanding Annual O&M Plan; Steel Pipeline O&M
		CO5 Understanding CGD Business Scenario - India and
		Abroad; Profile of Major Players
		3 Theory period of Fifty minutes per week over a semester
	Credits (3-1-0)4	1 Tutorial period of Fifty minutes per week over a semester

	PTL 0701	CO1 Understanding to Functions of drilling fluid, Classification
	Elective – 2	of drilling fluids, Properties of drilling fluids, Nature of drilling
	Drilling Fluids	fluid
	and Cementation	CO2 Understanding toInhibitive and Non-inhibitive drilling
	(7 th semester)	fluids, synthetic oil based drilling fluids. Composition,
		functions and general nature of rotary drilling fluid,
		CO3 Understanding toAdvanced mud Technology, Safety and
		Environmental Impact of Drilling fluid, Waste management,
		classification of drilling waste
		CO4 Understanding toCementing, Cements & cement slurry:
		Objectives of cementing, oil well cements, Classification of
		cement, Slurry design, Slurry additives
		CO5 Understanding to Primary cementing, Stage cementing,
		Liner cementing, Plugging, Squeeze Cementing techniques in
		practice
		3 Theory period of Fifty minutes per week over a semester
		1 Tutorial period of Fifty minutes per week over a semester
	Credits (3-1-2)5	2 Practical period of Fifty minutes per week over a semester
	PTL 0702	CO1 Understanding to Gas lift-continuous and intermittent,
	Artificial Lift	chamber lift, plunger lift/sucker rod pumping
	Methods	CO2 Understanding to Graphical and analytical methods,
	(7 th semester)	intermittent gas lift system; Single point injection
		CO3 Understanding to Rod Pumping system (SRP and PSP)
		design and related calculations
		CO4 Understanding to Centrifugal electric submersible
		pumping system, Hydraulic pumping, piston and jet, related
		CO5 Understanding to Nodel System Analysis and its
		application to artificial lift optimization Artificial lift selection
		application to artificial int optimization, Artificial int selection
		3 Theory period of Fifty minutes per week over a semester
		1Tutorial period of Fifty minutes per week over a semester
	Credits (3-1-0)4	The offer period of They minutes per week over a semiester
	PTL 0703	CO1 Understanding to Tanker design, safety features. Oceanic
	Pipeline	transport of oil and liquefied natural gas
	Transportation of	CO2 Understanding Route selection, pipe line construction
	oil and gas	process and equipment: trenching, aligning, connecting pipes
	(7 th semester)	CO3 Understanding Pressure drop calculation, types, sizing and
	, , , , , , , , , , , , , , , , , , ,	location of pumps and compressor, Instrumentation and control
		CO4 Understanding to Gas distribution control. Offshore pipe
		line: Sag and over-bend; stinger and riser, under-water welding
		CO5 Understanding Codes and standards for design, supply and
		construction of Crude oil and Natural gas pipeline
		3 Theory period of Fifty minutes per week over a semester
	Credits (3-1-0)4	1Tutorial period of Fifty minutes per week over a semester

	PTL 0704	CO1 Understanding to Energy resources; Conventional Energy
	UN –Conventional	Resources; Un-Conventional Energy Resources; Difference
	Petroleum	between Conventional and un Conventional
	Resources(7 th seme	CO2 Understanding to) CBM – formation; Resource potential
	ster)	Mapping; Seismic analysis and other methods for assessing the
		potential
		CO3 Understanding to Shale Rock formation: History of Shale
		Gas: US success Story: Replication possibilities US experience
		in India
		CO4 Understanding to Estimation of Unconventional Energy
		Resources Methods of estimation Indian scenario' notential of
		various unconventional sources
		CO5 Understanding to CBM and Shale Gas Exploration
		Technology L and and water requirement Environmental issues
		3 Theory period of Fifty minutes per week over a semester
	Credita (2, 1, 0)4	1 Tutorial pariod of Fifty minutes per week over a semester
	DTE 0705	CO1 Understanding to Tool orientation Directional wall
	PIE 0/05 Dimentional	refiles Well not hdeflection & compation
	Directional Dirilling	CO2 Understanding of Turke duille motor description. Device
	Drining (7th across tor)	CO2 Understanding of Turbo-drifts, motor description, Power
	(/"semester)	Calculation and applications. Auto-track and verti-track system,
		Rotary Steerable motors
		CO3 Understanding of Different profiles, Drilling techniques,
		Mud requirements & characteristics, casing and drill string
		requirements
		CO4 Understanding of Down the Hole Well Surveying: Well
		surveying objectives, surveying methods, Surveying Analysis
		methods
		CO5 Understanding to MWD/ LWD, MWD tools, Telemetry
		system and data interpretation. Directional Drilling Problems
		and Their Remedies
		3 Theory period of Fifty minutes per week over a semester
	Credits (3-1-0)4	1 Tutorial period of Fifty minutes per week over a semester
	<u>PTE 0702</u>	CO1 Understanding to Accuracy; Precision; Repeatability;
	Elective –1, Basic	Least Count; Zero Error; Sensitivity
	Instrumentation	CO2 Understanding to Digital measurements; Primary
	Sensors and	measurement; Secondary Measurement, Measuring
	Control	Instruments- Pressure Measurement; Temperature
	(7 th semester)	Measurement
		CO3 Understanding to Open loop control; Close loop Control;
		Feedback Control; Surge control
		CO4 Understanding to DIDC Based Control System;
		Telemetry; SCADA ; system; Remote Transmitting Units
		CO5 Understanding Magnetic flux measurement system;
		Virtual Drilling; Controlling Well Drilling operation
	Credits (3-1-0)4	3 Theory period of Fifty minutes per week over a semester
		1 Tutorial period of Fifty minutes per week over a semester

	PTE 0705	CO1 Understanding Polymer science Classification of polymer
	Elective-1,	structure Molecular weight, Chemical structure & Thermal
	Polymer	transition
	Technology	CO2 Understanding Chain growth polymerization.
	(7 th semester)	Polymerization techniques, Reactions of synthetic polymers
	(CO3 Understanding Solution & solid-state properties. Viscosity
		& Rubber elasticity
		CO4 Understanding Degradation, stability & environmental
		issues, polymer additives
		CO5 Understanding Commodity thermoplastics & fithers
	Credits (3-1-0)4	elastolmers & thermo sets engineering & specialty polymers.
		3 Theory period of Fifty minutes per week over a semester
		1Tutorial period of Fifty minutes per week over a semester
	PTL 0801	CO1 Understanding Monte Carlo simulation. Nature of
	Modeling and	computer- modeling and simulation. Limitations of simulation.
	Simulation	areas of applications
	(8 th semester)	CO2 Understanding Concepts in discrete event simulation.
	()	manual simulation using event scheduling, single channel
		queue. two server queue
		CO3 Understanding Techniques for generating random
		numbers- Mid square method -the mod product method
		CO4 Understanding Discrete uniform -distribution poisson
		distribution -geometric distribution
		CO5 Understanding variance reduction techniques -antithetic
		variables, variables verification and validation of simulation
		models
		3 Theory period of Fifty minutes per week over a semester
	Credits (3-1-2)5	1 Tutorial period of Fifty minutes per week over a semester
	. ,	2 Practical period of Fifty minutes per week over a semester
	PTL 0802	CO1 Understanding Origin and Formation of Petroleum,
	Petroleum	Production Statistics, Reserves and Raw Materials,
	Refining and	CO2 Understanding Evaluation of Petroleum, Thermal
	Petrochemicals	Properties of Petroleum Fractions, Important products-
	(8 th semester)	Properties and Test Methods
		CO3 Understanding Other refining processes: Cracking,
		reforming, alkylation, isomerization
		CO4 Understanding Specialty products: Lube oil production,
		propane de-asphalting
		CO5 Understanding Petro-chemical feed stock: BTX, olefins:
		method ethane and butane treated products from natural gas.
		Storage and safety measures
		3 Theory period of Fifty minutes per week over a semester
		1 Tutorial period of Fifty minutes per week over a semester
	Credits (3-1-0)4	

	PTL 0803	CO1 Understanding Basic concept, various stimulation
	Well Stimulation	methods, matrix Acidization, Coiled Tubing,
	(8 th semester)	CO2 Understanding Physical properties of formation materials:
		Mechanical properties and Thermal properties,
		CO3 Understanding Hydraulic Fracturing: Dynamic fracture
		Geometry: Orientation, vertical, horizontal
		CO4 Understanding Well Productivity; design and optimization
		of fracturing processes. Acidization: Methods
		CO5 Understanding Designing Matrix acidizing in carbonates.
		Acid additives, Sand Control
	Credits (3-1-0)4	3 Theory period of Fifty minutes per week over a semester
		1 Tutorial period of Fifty minutes per week over a semester
	PTE0802	CO1 Understanding Sea states and weather: Meteorology,
	Elective –	oceanography. Sea-bed soil condition,
	1Offshore Drilling	CO2 Understanding Off-shore structures: Fixed platform, jack-
	and Production	up rig: design and operational features mobile units; semi-
	Operations	submersible,
	(8 th semester)	CO3 Understanding Off-shore drilling: Well head and sea floor
		connection; conductor and riser.
		CO4 Understanding Sub-sea technology in deep water – use of
		divers and robots, Off-shore production
		CO5 Understanding Storage for oil; SPM & SBM system, Deep
		water technology: use of remote operating
		3 Theory period of Fifty minutes per week over a semester
	Credits (3-1-0)4	1 Tutorial period of Fifty minutes per week over a semester
	PTE0802	CO1 Understanding Classification of Fuel- Solid Fuels, Liquid
	Elective – 2 Fuel	Fuels, Gaseous Fuels, and Various Terms Related to the Study
	Technology	of Fuels and Combustion
	(8 th semester)	CO2 Understanding Coal Preparation, Coal Storage, Coal
		Carbonization and by-product Recovery
		CO3 Understanding Coal: A Source of Energy- Gasification of
		Coal. Fixed Bed Gasification Fluidized Bed Gasification
		CO4 Understanding Gaseous and Liquid Fuels- Natural gas,
		Producer gas, Water gas, Carbureted Water gas
	Credits (3-1-0)4	CO5 Understanding Combustion: General Principle of
		Combustion. Combustion of Solid Fuels – Grate Firing nd
		Pulverized Fuel Firing System
		3 Theory period of Fifty minutes per week over a semester
		1 Tutorial period of Fifty minutes per week over a semester
BOS	PTL0301	
09/05	/2020 Introduction to	
REV	ISIONS Petroleum	CO2 Petroleum Exploration Methods
	Operations	CO3 Concept of Drilling Eluide
	(3-0-2)4	
	3 rd Semester	CO4 Well Completion

		CO5 Petroleum Transportation
		3 Theory period of Fifty minutes per week over a semester 2 Practical period of Fifty minutes per week over a semester
	PTL0302 Applied Sedimentology (3-0-2)4	CO1 Introduction to Geology CO2 Petrology CO3 Structural Geology
		CO5 Massurement Sustem
		3 Theory period of Fifty minutes per week over a semester 2 Practical period of Fifty minutes per week over a semester
	CEL0307	CO1 Principles and classifications of surveying
	Geomatics (3-0-2)4	CO2 Equipment of surveying CO3 Tachometry: CO4 Curves
		CO5 Control Surveys 3Theory period of Fifty minutes per week over a semester 2 Practical period of Fifty minutes per week over a semester
	MEL 0310	CO1Understanding Stress and strain; normal, shear and
	Mechanics of	bearing stresses;
	Solid	CO2Understanding Strain energy
	Credits (3-1-2)	CO3Understanding State of stress, Generalized Hook's
		CO4Understanding Mohr's Circle representation for stress and strains
		CO5Understanding Bending of beams:
		CO6Understanding Torsion of Shafts
		CO7Understanding Pressure Vessels:
		3 Theory period of Fifty minutes per week over a semester
		1 Tutorial period of Fifty minutes per week over a semester
		2 Practical period of Fifty minutes per week over a semester

PTL 0401	CO1 Surface characteristics and Geochemical Methods
Petroleum	CO2 Geological Methods
Exploration	CO3 Magnetic- Survey
Methods	CO4 Gravity Method:
(3-1-0)4	CO5 Seismic Methods:
	3Theory period of Fifty minutes per week over a semester
	1 Tutorial period of Fifty minutes per week over a semester
PTL 0402	CO1 Gas, gas-condensate, and oil reserves
Applied	CO2 Material balance equation
petroleum	CO3 Performance prediction;
reservoir	CO4 Immiscible displacement process
engineering	CO 5 Oil and gas field development
(3-1-0)4	3Theory period of Fifty minutes per week over a semester 1 Tutorial period of Fifty minutes per week over a semester
PTL 0403	CO1 Sedimentary process & their products
Petroleum	CO2 Sedimentary environment reconstruction
Geology	CO3 Sedimentology and petroleum exploration
(3-1-2)5	CO4 Origin of Oil & gas source
	CO1 Petroleum entrapment
	3Theory period of Fifty minutes per week over a semester
	1 Tutorial period of Fifty minutes per week over a semester
	2 Practical period of Fifty minutes per week over a semester
PTL 0404	CO1 Drilling: Introduction, Drilling rigs its types
Drilling	CO1 Subsurface pressures
Technology-1	CO1 Bore hole problems:
(4-0-0)4	CO1 Drill Bit:
	CO1 Drilling Fluids
	4Theory period of Fifty minutes per week over a semester
MEL 0407	CO1 Definitions, Types, Properties of Fluid, Fluid Statics
Fluid Mechanics	CO2 Kinematics and conservation of Mass:
(3-1-2)5	CO1 The Boundary Layer
	CO1 Flow Through Pipes: Reynold's experiment
	CO1 Laminar Flow, Turbulent Flow, Dimensional Analysis:
	3Theory period of Fifty minutes per week over a semester
	1 Tutorial period of Fifty minutes per week over a semester
	2 Practical period of Fifty minutes per week over a semester