DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING Program & course outcomes Detail

Sr. No.	Academic contents	Types of contents	Outcomes
1.]	Programme	B.Tech.	 An ability to apply knowledge of mathematics, science and engineering in practice An ability to identify, critically analyze, formulate and solve engineering problems An ability to select appropriate engineering tools and techniques and use them with dexterity An ability to design a system and process to meet desired needs within realistic constraints such as health, safety, security and manufacturability An ability to devise and conduct experiments, interpret data and provide well informed conclusions An ability to understand the impact of engineering solutions within purview of laws, in a contemporary, global, economical, environmental, and societal context for sustainable development An ability to communicate effectively An ability to appreciate the importance of goal setting and to recognize the need for life-long learning. To produce well informed socially responsible global citizen with sharp critical thinking skills having sound awareness about finance management, engineering laws and human rights, ethics and values. They will have entrepreneurial spirit.

Sr. No.	Academic contents	Types of contents	Outcomes
2.	Specific Programme	B.Tech (ECE)	 Scholarship of Knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems. Critical Thinking: Shoulder responsibilities in planning and utilization analyzing the processes critically.

	3.	Problem Solving : Design Electronics and communication systems to meet specific social needs
	4.	and problems. Research Skill : Analyze and model the Electronics systems and hence effectively contribute towards
	5.	research and complex problem. Usage of Modern Tools: Cope up with the state-of- art (Modern Tool) in Electronics Engineering in tune
	6.	with modern engineering tools. Collaborative and Multi disciplinary work : Contribute in academics by way of multidisciplinary
		Contribute in academics by way of multidisciplinary works involving social health, safety, legal, and consequent responsibility.
	7.	Environment and Sustainability : Appreciate the impact of industrial activities on global warming and
		finding the sustainable technical solutions through independent and reflective learning.
	8.	Ethics : Understand the importance of financial aspects in system infrastructure development with ethical principles and social responsibilities.
	9.	Individual and Team Work : Undertake project in
		emerging areas to function effectively as an individual, and as a member or leader in diverse
		teams.
	10.	Communication: Communicate effectively with
		diverse audiences and able to write/present effective
	11	reports and design technical documentation. Life-long learning : Recognize the need for, and have
	11.	the preparation and ability to engage in independent
		and life-long learning in the broadest context of
		technological change.

Sr. No.	Academic contents	Types of contents	Outcomes
	Course	Optical Communication (8 th Semester)	 Analyze different component of optical fiber' Analyze different optical sources and detectors
3.		VLSI Design (8 th Semester)	 students able to design various building blocks used in various integrated circuits Beside these the student will be also be able to design low power digital cells to meet the requirement of low power dissipation
		Soft Computing	1. Identify to learn from the data
		(8 th Semester)	 Identify and solve the classification problem Identify Soft computing for better classification

	mages using different image processing
Processing tools	
(8 th Semester) 2. Learn to hig	shlight images by image enhancement
techniques	
3. Remove nois	es using restoration methods
	ges for classification
Modelling & Simulation (Int)1. Modelling sk Knowledge a	cill of transport systems and processes. bout prediction of traffic. l of transport processes.
Advanced Digital	
Signal Processing 1. Learn to estim	nate the parameters
(Int) 2. Learn to mini	mize the error
(8 th Semester) 3. Able to desig	n adaptive filters
	-
Antenna & Wave 1. Understand th	ne concept of how does antenna radiates
Propagation and receives.	1
1	ne concept of wave propagation.
	arious type of antenna arrays.
	ne working of various type of antenna
5. Able to desig	
	he fundamental concepts in computer
Communication communication	
(6 th Semester) 2. Understand h	ow data communications over a data link
to transfer of	information across local-area networks
and wide-area	a networks.
Cellular Mobile 1. Understand	the basic concepts of wireless
Communication communication	ons and media access layers of network
(6 th Semester) protocol stacl	ζ.
	he concepts related to systems include
	vorks (GSM), wireless LANs (IEEE
	ad hoc wireless and personal area
	., Bluetooth, ZigBee).
Microcontroller &	., Diactorii, ZigDee).
Embedded 1. Able to desig	n a system using microcontrollers
2. Able to learn	programming.
Systems 3 Able to interf	ace using microcontroller
(6 th Semester)	-
	Fabrication Steps of any Semiconductor
(6 th Semester) Devices	

Digital System Design (4 th Semester)	 Explain Different Processes Such As Oxidation, Photolithography, Wet Etching, Metal Deposition, Ion Implantation, Annealing Able to implement a digital system. Able to handle the challenging problems while designing
Computer System Organization (4 th Semester)	It will cover machine level representation of data, instruction sets, computer arithmetic, CPU structure and functions, memory system organization and architecture, system input/output, multiprocessors, and digital logic.
Signal & System (4 th Semester)	 Understand the basic concepts of signals and systems Identify the signals Able to convert the signals from time domain to frequency domain using z transform, Laplace transform, Fourier Transform.
Electronics Circuit & Linear Integrated Circuits (4 th Semester)	 Infer the DC and AC characteristics of operational amplifiers and its effect on output and their compensation techniques. Elucidate and design the linear and non-linear applications of an OP-AMP and special application ICs. Explain and compare the working of multi-vibrators using special application IC 555 and general-purpose
	 OP-AMP. 4. Classify and comprehend the working principle of data converters. 5. Illustrate the function of application specific ICs such as Voltage regulators, 6. PLL and its application in communication.
Analog Communication (4 th Semester)	 a) Able to design Amplitude modulation and demodulation systems. b) Able to implement Angle modulation and demodulation systems. c) Understand the noise performance of various receivers. d) Understand the concepts of channel coding.

Sr.	Academic	Types of contents	Outcomes
No.	contents		
3.		Wireless Ad-hoc	1 Ability to acquire the basic knowledge of various
		Networks	1. Ability to acquire the basic knowledge of various
		(7 th Semester)	aspects of wireless ad-hoc networks, from design through performance issues to application
			requirements.
			2. Ability to prepare students to perform and analysis the
			characteristics features of networks and applications of
			wireless ad-hoc networks after completion of the
			classes.
		Nano electronics	As Microelectronics Reaches Up To Its Limit In
		(7 th Semester)	Miniaturization Now Nano electronics Is Emerging As
			Future Electronics With This Syllabus Student Dents
			Shall Able To Understand
			1. Basic Principle Of Nanoelectronics
			2. Synthesis Of Nano Structure & Nano Devices
			3. Characterization Method For Nano Structures
			4. Working Of Nano Devices
		Introduction to	1. Fundamentals of IoT.
		Internet of Things	 Fundamentals of IoT. Application Areas of IoT.
		ІоТ	 Application Areas of 101. Ability to program IoT devices.
		(7 th Semester)	
		Microwave	1. Analyze different microwave devices, networks and
		Engineering	components
		(7 th Semester)	2. 2. Analyze and measure different microwave
			parameters like VSWR impedance power wavelength
			etc
		Satellite	1. Understand the fundamental principal of Satellite
		Communication	Communication
		(7 th Semester)	2. Understand useful satellite orbits for satellite
			communication tasks 2 Describe the various types of enterne used in setallite
			3. Describe the various types of antenna used in satellite communication
			4. Calculate complete Link budgets.
			5. Calculate signal to noise ratio in satellite
			communication
			communication

Advanced	1.	Understand the basic concepts of programming using
Microprocessor &		microprocessors
Interfacing		Able to program
(5 th Semester)		Able to do interfacing using microprocessors
Control Systems		Able to implement open loop and closed loop system
(5 th Semester)		Analysis of time domain and frequency domain
(S Schester)	2.	techniques
Digital Signal	1	Able to implement a FIR and IIR systems
Processing		Able to design a filter
(5 th Semester)		Able to reduce computations using FFT algorithms
Electromagnetic	-	Able to evaluate static magnetic fields
Theory		Able to understand how materials affect electric and
(5 th Semester)	0.	magnetic fields
(5 Schester)	C	Able to understand principles of propagation of
		uniform plane waves.
Digital	а.	The student will know the constituents of a digital
Communication		communications system.
(5 th Semester)	b.	The student will know the different modulation
	~.	techniques in digital communications system.
	c.	The student will understand basic information theory
		The student will learn source coding techniques.
	e.	The student will understand basic Error Control
		Coding
Digital	1	<u> </u>
Electronics	1.	Ability to acquire the basic knowledge of digital logic
(3 th Semester)		levels and application of knowledge to understand digital electronics circuits.
	2	Ability to prepare students to perform the analysis and
	2.	design of various combinational and sequential
		circuits and visualize the working /operation of circuit
		/ device / equipment / technique after completion of
		the classes.
	<u> </u>	
Network Analysis		Able to solve problems using KCL and KVL
and Synthesis	2.	Able to differentiate mesh and nodal analysis
(3 th Semester)	3.	Understanding and solving problems using different
		Network Theorems
	4.	Implementation of two port network
	5.	Analysis and synthesis of Networks

Architecting Smart IoT Devices (3 th Semester)	 Comprehend and analyze IoT architecture reference model. Comprehend the characteristics of various IoT Communication Architecture, topologies and Hierarchy. Comprehend the concepts of ETSI IoT architecture standards for different use cases under discussion. Architect an IoT system for real life applications. Having an ability to design a component or a product applying all the relevant standards and with realistic constraints.
Semiconductor Devices (3 th Semester)	 Understand the concept of various semiconductor devices. Design and analyse various electronic circuits. Understand the concept of BJT and MOSET. Analyse and design feedback amplifiers. Design various type of oscillators.
Advanced Logic Design (9 th Semester)	 Implementation of digital systems using VHDL And Virology Synthesis of digital circuits using Xilinx
Wireless Ad-hoc Networks (9 th Semester)	 Ability to acquire the basic knowledge of various aspects of wireless ad-hoc networks, from design through performance issues to application requirements. Ability to prepare students to perform and analysis the characteristics features of networks and applications of wireless ad-hoc networks after completion of the classes.
Mixed Analog Digital Design (9 th Semester)	 Understanding of the issues in mixed signal VLSI design. Understanding of the Mixed Signal Layout issues. 2. Understanding of the various circuits like Current mirrors, Source follower, Cascode Stage etc. Understanding of the feedback amplifiers. Ability to design the CMOS differential amplifiers, operational amplifiers etc. Understanding of the non-linear & dynamic analog circuits.

	6.	Understanding of the data converter fundamentals, data convertor architectures:
Advanced Digital Communication (9 th Semester)		Understanding of digital modulation techniques used in wireless communication. Understanding equalization techniques and diversity concepts.

Sr. No.	Academic contents	Types of contents	Outcomes
		M.Tech1 st	
		Semester	
		Communication	
		System	
		Quantitative	a) A course which summarizes and consolidates
		Techniques	previously covered material in Marketing, Computer
		(M.Tech 1 st	Information Systems and Quantitative Methods. It
		Semester)	introduces students to (1) the quantitative and
			qualitative analysis of large bodies of marketing data
			and (2) to the manipulation of this data to achieve
			desired objectives.
		Advanced Digital	b) Understanding of digital modulation techniques used
		Communication	in wireless communication.
		(M. Tech 1 st	c) Understanding equalization techniques and diversity
		Semester)	concepts.
		Wireless ad-hoc	1. Ability to acquire the basic knowledge of various
		Networks	aspects of wireless ad-hoc networks, from design
		(M. Tech 1 st	through performance issues to application
		Semester)	requirements.
			2. Ability to prepare students to perform and analysis the
			characteristics features of networks and applications of
			wireless ad-hoc networks after completion of the
			classes.
		Advanced Digital	1. Learn to estimate the parameters
		Signal Processing	2. Learn to minimize the error
		(M. Tech 1 st	3. Able to design adaptive filters.
		Semester)	
		Mobile & Satellite	1. Understand the principles, concepts and operation of
		Communication	satellite communication systems

(M. Tech 1 st	2. Describe concept of geostationary satellite and its
Semester)	various applications.
Semester)	 Understand the various concepts of earth station.
	4. Design and analyze satellite link.
M.Tech3rd	
Semester	
Mixed Analog	Understanding of the issues in mixed signal VLSI design.
Digital Design	1. Understanding of the Mixed Signal Layout issues.
M. Tech 3 rd	2. Understanding of the various circuits like Current
Semester	mirrors, Source follower, Cascode Stage etc.
	3. Understanding of the feedback amplifiers.
	4. Ability to design the CMOS differential amplifiers,
	operational amplifiers etc.
	5. Understanding of the non-linear & amp; dynamic
	analog circuits.
	6. Understanding of the data converter fundamentals,
	data convertor architectures:
System On Chip	The objective of this course is to provide students with a
M. Tech 3 rd	sound knowledge of VLSI systems covering the
Semester	following:
	1. Processor architectures, memory organization and
	performance analysis, and concepts and techniques
	for parallel processing and pipeline processing.
	2. High-speed synchronization design and system noise
	consideration.
	3. VLSI system design verification and testability, and system reliability.